
CONSTRUCTION OF NON-×µ-INDIVISIBLE TKND-AVKF-FIELDS

SHOTA TSUJIMURA

Abstract. In an author’s joint work with Hoshi and Mochizuki, we introduced the notion
of TKND-AVKF-field [concerning the divisible subgroups of the groups of rational points of
semi-abelian varieties] and obtained an anabelian Grothendieck Conjecture-type result for
higher dimensional configuration spaces associated to hyperbolic curves over TKND-AVKF-
fields. On the other hand, every concrete example of TKND-AVKF-field that appears in
this joint work is a ×µ-indivisible field [i.e., a field such that any divisible element of the
multiplicative group of the field is a root of unity]. In the present paper, we construct new
examples of TKND-AVKF-fields that are not ×µ-indivisible.

Contents

Introduction 1
1. Basic definitions 3
2. Non-×µ-indivisible TKND-AVKF-fields 4
Acknowledgements 9
References 10

Introduction

Throughout the present paper, we shall use the following notations and conventions: The
notation Z will be used to denote the additive group of integers. The notation Q will be used
to denote the field of rational numbers. We shall refer to a finite extension field of Q as a
number field. If p is a prime number, then the notation Zp (respectively, Qp) will be used to
denote the p-adic completion of Z (respectively, Q). For any field F of characteristic 0, field
extension F ⊆ E, abelian variety A over F , positive integer n, and prime number l, we shall

write F for the algebraic closure [determined up to isomorphisms] of F ; GF
def
= Gal(F/F );

F× def
= F \ {0}; µn(F ) ⊆ F× for the subgroup of n-th roots of unity ∈ F ; ζn ∈ F a primitive

n-th root of unity;

µ(F )
def
=

∪
m≥1

µm(F ), F×l∞ def
=

∩
m≥1

(F×)l
m

, F×∞ def
=

∩
m≥1

(F×)m,

where m ranges over the positive integers; F ab (⊆ F ) for the maximal abelian extension field
of F ; Fdiv (⊆ F ) for the field obtained by adjoining the divisible elements of the multiplicative
groups of finite extension fields of F to Q; A(E) for the group of E-valued points of A;
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A(E)tor ⊆ A(E) for the subgroup of torsion points; A[l] ⊆ A(F ) for the subgroup of l-torsion
points; TlA for the l-adic Tate module associated to A.
Let us recall the notions of ×µ-indivisible field and TKND-AVKF-field for our purpose [cf.

Definition 1.1, (i), (ii), (iii), (iv), (v), below]. Let F be a field of characteristic 0. Then we
shall say that F is

• ×µ-indivisible if F×∞ ⊆ µ(F );
• stably ×µ-indivisible if, for every finite extension field E of F , it holds that E is
×µ-indivisible;

• TKND [i.e., “torally Kummer-nondegenerate”] if Fdiv ⊆ F is an infinite field exten-
sion;

• AVKF [i.e., “abelian variety Kummer-faithful”] if, for each abelian variety A over a
finite extension field E of F , any divisible element ∈ A(E) is trivial;

• TKND-AVKF if F is both TKND and AVKF.

For instance, every subfield of the maximal cyclotomic extension of a number field is TKND-
AVKF [cf. [10], Theorem 3.1, and its proof; [10], Remark 3.4.1]. In [2], we proved a certain
anabelian Grothendieck Conjecture-type result for higher dimensional configuration spaces
associated to hyperbolic curves over TKND-AVKF-fields. Therefore, from the viewpoint of
anabelian geometry, it would be important to investigate examples of TKND-AVKF-fields
that have not appeared in the literatures yet. On the other hand, we note that every TKND-
AVKF-field that appears in [2] is stably ×µ-indivisible. In the present paper, we construct
new examples of TKND-AVKF fields that are not ×µ-indivisible [cf. Corollary 2.5]:

Theorem A. Let p be a prime number; K a number field. Write L (⊆ Q) for the field
obtained by adjoining all roots of p to K [so L contains all roots of unity, and K ⊆ L is a
nonabelian metabelian Galois extension]. Then L is not ×µ-indivisible, and every subfield of
L is TKND-AVKF.

The key ingredient of the proof of Theorem A is the finiteness theorem of torsion points
of abelian varieties [cf. Theorem 2.1] as follows:

Theorem B. We maintain the notation of Theorem A. Let A be an abelian variety over L.
Then, for each finite field extension L ⊆ M (⊆ Q), it holds that A(M)tor is finite.

We apply Ribet’s theorem concerning the finiteness of torsion points of abelian varieties
valued in the maximal cyclotomic extension of a number field [cf. [3], Appendix, Theorem
1], together with Kubo-Taguchi’s lemma [cf. [4], Lemma 2.2, (i)], to prove Theorem B.

Finally, we also give an example of a stably ×µ-indivisible field that is not AVKF [cf.
Proposition 2.6]:

Proposition C. Q(ζ4)
ab (⊆ Q) is a stably ×µ-indivisible field that is not AVKF.

Thus, one may conclude from Theorem A and Proposition C that the notion of AVKF-field
is neither stronger nor weaker than the notion of stably ×µ-indivisible field [cf. Remark 2.6.1;
[2], Introduction].
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1. Basic definitions

In the present section, we recall the definitions of TKND-AVKF-fields and stably ×µ-
indivisible fields:

Definition 1.1 ([2], Definition 6.1, (iii); [2], Definition 6.6, (i), (ii), (iii); [10], Definition 3.3,
(iv), (v)). Let F be a field of characteristic 0; p a prime number.

(i) We shall say that F is p-×µ (respectively, ×µ)-indivisible if

F×p∞ ⊆ µ(F ) (respectively, F×∞ ⊆ µ(F )).

(ii) We shall say that F is stably p-×µ (respectively, stably ×µ)-indivisible if, for every
finite extension field E of F , it holds that E is p-×µ (respectively, ×µ)-indivisible.

(iii) If F satisfies the following condition, then we shall say that F is an AVKF-field [i.e.,
“abelian variety Kummer-faithful field”]:

Let A be an abelian variety over a finite extension field E of F . Then
any divisible element ∈ A(E) is trivial.

(iv) If Fdiv ⊆ F is an infinite field extension, then we shall say that F is a TKND-field
[i.e., “torally Kummer-nondegenerate field”].

(v) If F is both a TKND-field and an AVKF-field, then we shall say that F is a TKND-
AVKF-field.

Remark 1.1.1. We maintain the notation of Definition 1.1. Then it follows immediately from
the various definitions involved that, if F is p-×µ-indivisible (respectively, ×µ-indivisible;
stably p-×µ-indivisible; stably ×µ-indivisible; AVKF), then every subfield of F is also p-
×µ-indivisible (respectively, ×µ-indivisible; stably p-×µ-indivisible; stably ×µ-indivisible;
AVKF). On the other hand, a similar assertion for TKND does not hold. Indeed, let M ⊆ F
be a subfield. Suppose that M is an algebraically closed field [of characteristic 0], and the
field extension M ⊆ F is a finitely generated transcendental extension. Then it follows
immediately from a similar argument to the argument applied in [6], Remark 1.5.4, (i),
together with the various definitions involved, that

Mdiv = M = Fdiv ⊊ F ⊊ F .

Thus, since M ⊆ F is an infinite field extension, we conclude that F is TKND, and M is not
TKND. [Note that if F is TKND, and the field extension M ⊆ F is algebraic, then it follows
immediately from the various definitions involved that M is also TKND.]

Remark 1.1.2. We maintain the notation of Definition 1.1. Then it follows immediately
from the various definitions involved that E×∞ ⊆ E×p∞ . Thus, if F is p-×µ-indivisible
(respectively, stably p-×µ-indivisible), then F is ×µ-indivisible (respectively, stably ×µ-
indivisible). On the other hand, if F is stably ×µ-indivisible, then since Qab ⊆ Q is an
infinite field extension, it holds that F is TKND [cf. [2], Remark 6.6.2].
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Remark 1.1.3. It follows immediately from the various definitions involved that the alge-
braically closed fields and real closed fields are trivial examples of non-TKND-fields. How-
ever, at the time of writing of the present paper, the author does not know to what extent
non-TKND-fields exist.

Proposition 1.2. Let F be an abelian extension field of a number field; p a prime number.
Then F is stably p-×µ-indivisible. In particular, F is stably ×µ-indivisible [cf. Remark
1.1.2].

Proof. Proposition 1.2 follows immediately from [10], Lemma D, (iv). □

2. Non-×µ-indivisible TKND-AVKF-fields

In the present section, we construct new examples of TKND-AVKF-fields that are not
×µ-indivisible. First, we begin by proving the finiteness theorem of torsion points of abelian
varieties [cf. Theorem B], which is a key ingredient of our construction:

Theorem 2.1. Let p be a prime number; K a number field. Write L (⊆ Q) for the field
obtained by adjoining all roots of p to K [so L contains all roots of unity, and K ⊆ L is a
nonabelian metabelian Galois extension]. Let A be an abelian variety over L. Then, for each
finite field extension L ⊆ M (⊆ Q), it holds that A(M)tor is finite.

Proof. First, by replacing K by a finite extension field of K, we may assume without loss of
generality that

ζ2p ∈ K, L = M,

and A descends to a semistable abelian variety A0 over K [cf. [1], Exposé IX, Théorème 3.6].
Write

K ′ def
=

∪
(m,p)=1

K(µm(Q)) (⊆ L),

where m ranges over the positive integers coprime to p. Fix a prime of K that lies over p,
and write

Ip ⊆ GK′ ⊆ GK

for the inertia subgroup [determined up to conjugacy] associated to the prime. In light of
the definition of L, by replacing K by a finite extension field of K again, we may assume
without loss of generality that the natural composite

Ip ⊆ GK′ ↠ Gal(L/K ′)

is surjective.
Next, we consider the mod l (respectively, l-adic) Galois representation associated to A.

For each prime number l ̸= p, let

Wl ⊆ A[l]GL (respectively, Wl ⊆ (TlA⊗Zl
Ql)

GL )

be an irreducible GK′-submodule, and write

ρl : GK′ → GL(Wl)
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for the mod l (respectively, l-adic) Galois representation that arises from the semistable
abelian variety A0 over K.

Next, we verify the following assertion:

Claim 2.1.A: Let l be a prime number such that l ̸= p. Then it holds that

Wl = W
GK′
l .

Indeed, sinceWl ⊆ A[l]GL (respectively, Wl ⊆ (TlA⊗Zl
Ql)

GL), it holds that ρl factors through
the natural surjection GK′ ↠ Gal(L/K ′). Note that

• Gal(L/K ′) is an extension of pro-cyclic groups,
• A0 is a semistable abelian variety over K,
• Wl is a finite dimensional Hausdorff topological vector space, and
• ρl is an irreducible GK′-representation.

Then since the composite Ip ⊆ GK′ ↠ Gal(L/K ′) is surjective, it follows immediately from
[1], Exposé IX, Proposition 3.5, together with Lemma 2.2 below, that ρl(Ip) = {1}. Thus,

we conclude that ρl(GK′) = {1}, hence that Wl = W
GK′
l . This completes the proof of Claim

2.1.A.
Next, we consider the p-adic representation associated to A. Let

Vp ⊆ (TpA⊗Zp Qp)
GL

be a nonzero irreducible GK′-submodule. Write

ρp : GK′ → GL(Vp)

for the p-adic Galois representation that arises from the semistable abelian variety A0 over
K;

Lp (⊆ Q)

for the field obtained by adjoining all p-power roots of p to K ′. On the other hand, since
ζ2p ∈ K, it holds that ρp factors as the composite of the natural surjection

GK′ ↠ Gal(Lp/K
′)

∼→ Zp(1)⋊ Zp

— where “(1)” denotes the Tate twist — with a p-adic representation

ρ′p : Zp(1)⋊ Zp → GL(Vp).

Next, we verify the following assertion, which is a special case of Kubo-Taguchi’s lemma
[cf. [4], Lemma 2.2, (i)]:

Claim 2.1.B: There exists an open subgroup H ⊆ Zp(1) (⊆ Zp(1) ⋊ Zp) such
that Vp = V H

p .

Indeed, let σ ∈ Zp(1) (⊆ Zp(1)⋊Zp) be an element. Then, for each τ ∈ Zp(1)⋊Zp, it holds
that

τστ−1 = σχp(τ),

where χp : (GK′ ↠) Zp(1)⋊ Zp ↠ Zp ↪→ Z×
p denotes the p-adic cyclotomic character. Write

d
def
= dimQp Vp; {λ1, . . . , λd} for the set of eigenvalues of ρ′p(σ). Let n be a positive integer such

that 1 + pn ∈ Im(χp). Then it follows immediately from the equality in the above display
that

{λ1, . . . , λd} = {λ1+pn

1 , . . . , λ1+pn

d }.
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Write

t
def
=

∏
1≤i≤d

(1 + pn)i − 1; H
def
= tZp(1).

Then it holds that λt
i = 1 for each positive integer i such that 1 ≤ i ≤ d. In particular, since

t is independent of the choice of σ, every element ∈ ρ′p(H) is unipotent. Note that

• H ⊆ Zp(1)⋊ Zp is a pro-cyclic normal closed subgroup,
• Vp is a finite dimensional Hausdorff topological vector space, and
• ρ′p is an irreducible Zp(1)⋊ Zp-representation.

Thus, we conclude from Lemma 2.2 below that V H
p = Vp. This completes the proof of Claim

2.1.B.
Finally, we verify that A(L)tor is finite. It follows immediately from [the resp’d portion

of] Claim 2.1.A and Claim 2.1.B, together with [3], Appendix, Theorem 3, that, for each
prime number l, the subgroup of l-power torsion points of A(L) is finite. On the other
hand, it follows immediately from [the non-resp’d portion of] Claim 2.1.A, together with
[3], Appendix, Theorem 2, that, for all but finitely many prime numbers l, the subgroup of
l-torsion points of A(L) is trivial. Thus, we conclude that A(L)tor is finite. This completes
the proof of Theorem 2.1. □

Lemma 2.2. Let G be a profinite group; H ⊆ G a pro-cyclic normal closed subgroup; V
a finite dimensional irreducible Hausdorff topological G-vector space. Then, if the action
of a topological generator of H on V is unipotent, then the action of H on V [obtained by
restricting the action of G on V ] is trivial.

Proof. Let σ ∈ H be a topological generator whose action on V is unipotent. Write

V H ⊆ V, V σ ⊆ V

for the invariant subspaces associated to H, σ, respectively. Note that our assumptions that

• V is a Hausdorff topological vector space, and
• σ ∈ H is a topological generator

imply that V H = V σ. Moreover, since the action of σ on the finite dimensional vector space
V is unipotent, if V ̸= {0}, then

V H = V σ ̸= {0}.
On the other hand, observe that since H ⊆ G is a normal closed subgroup, the action of G
on V induces a natural action of G on the invariant subspace V H ⊆ V . Thus, we conclude
from our assumption that V is an irreducible topological G-vector space that V H = V . This
completes the proof of Lemma 2.2. □

Proposition 2.3. Let p be a prime number; A a mixed characteristic Noetherian local domain
of residue characteristic p; F an abelian extension field of the field of fractions K of A; f ∈ F
an element. Write f

1
∞ ⊆ F for the subset of all roots of f ; E (⊆ F ) for the field obtained by

adjoining f
1
∞ to F . Then every subfield of E is TKND.
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Proof. First, by replacing K, F , by extension fields of K, F , respectively, we may assume
without loss of generality that

• f ∈ K,
• K is a mixed characteristic complete discrete valuation field whose residue field is an
algebraically closed field of characteristic p, and

• Ktm(µ(F )) ⊆ F , where K ⊆ Ktm(⊆ F ) denotes the maximal tame extension [so, if
F ⊊ E, then the field extension F ⊆ E is a Zp-extension].

Moreover, by replacing f by the multiple of the reciprocal of f with a suitable Teichmüller
representative ∈ K, if necessary, we may assume without loss of generality that

f ∈ K
∩

(mF

∪
(1 +mF )) = mK

∪
(1 +mK),

where mF (respectively, mK) denotes the maximal ideal of the ring of integers of the Henselian
valuation field F (respectively, K).

Next, we verify the following assertion:

Claim 2.3.A: For each finite field extension F ⊆ F †, it holds that F×p∞ =
(F †)×p∞ .

Indeed, Claim 2.3.A follows immediately from [5], Lemmas 2.5, 2.6, together with our as-
sumptions on K.

Here, we consider the following commutative diagram

F× −−−→ E×yκF

yκE

0 −−−→ Hom(Gal(E/F ),Zp) −−−→ Hom(GF ,Zp) −−−→ Hom(GE,Zp),

where the upper horizontal arrow denotes the natural injection; the vertical arrows κF and κE

denote the Kummer maps; the lower horizontal sequence denotes the natural exact sequence.
Note that Ker(κF ) = F×p∞ , and Ker(κE) = E×p∞ . Write

Pf ⊆ E

for the subset consisting of the powers of elements ∈ f
1
∞ (⊆ E).

Next, we verify the following assertion:

Claim 2.3.B: Suppose that f ∈ 1 + mF (respectively, f ∈ mF ). Then it holds
that

E×p∞ ⊆ F×p∞ · fZp · Pf (respectively, E×p∞ ⊆ F×p∞ · Pf ).

Indeed, if F = E, then we have nothing to prove. Thus, it suffices to consider the case where
F ⊊ E [so f ̸∈ F×p∞ ]. Let g ∈ E×p∞ be an element. In light of Claim 2.3.A, by replacing
K by a finite extension field of K, we may assume without loss of generality that g ∈ F×.
Then since f, g ∈ F ∩ E×p∞ , it follows from the above commutative diagram that

κF (f), κF (g) ∈ Hom(Gal(E/F ),Zp)
∼→ Zp.

Note that since f ̸∈ F×p∞ , it holds that κF (f) ̸= 0. Thus, we conclude that there exist
a ∈ Zp (respectively, a ∈ Z) and b ∈ pZ≥0 [where Z≥0 denotes the set of nonnegative integers]
such that

κF (f
a) = κF (g

b).
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This equality, together with our assumption that µ(F ) ⊆ F , immediately implies that

g ∈ F×p∞ · fZp · Pf (respectively, g ∈ F×p∞ · Pf ).

This completes the proof of Claim 2.3.B.
Next, we verify the following assertion:

Claim 2.3.C: It holds that ∪
E⊆E†

(E†)×p∞ ⊆ E,

where E ⊆ E† (⊆ F ) ranges over the finite field extensions of E.

Indeed, Claim 2.3.C follows immediately from Claims 2.3.A, 2.3.B.
Next, we verify the following assertion:

Claim 2.3.D: E ∩Q ⊆ Q is an infinite field extension.

Indeed, observe that the image of the natural homomorphism GK → GQ [determined up to
composition with inner automorphisms] is isomorphic to the absolute Galois group G of a
mixed characteristic Henselian discrete valuation field whose residue field is isomorphic to
the algebraic closure of a finite field. Then since G is torsion-free [cf. Lemma 2.4, below], it
holds that the image of the composite GE ⊆ GK → GQ is infinite. Thus, we conclude that
E ∩Q ⊆ Q is an infinite field extension. This completes the proof of Claim 2.3.D.

Finally, let M ⊆ E be a subfield. Then it follows immediately from Claim 2.3.C that∪
M⊆M†

(M †)×p∞ ⊆ E,

where M ⊆ M † (⊆ F ) ranges over the finite field extensions of M . On the other hand, it
follows immediately from Claim 2.3.D that E ∩M ⊆ M is an infinite field extension. Thus,
we conclude that M is TKND. This completes the proof of Proposition 2.3. □

Lemma 2.4. Let K be a Henselian discrete valuation field with algebraically closed residues.
Then it holds that GK is torsion-free.

Proof. Lemma 2.4 follows immediately from the fact that the cohomological dimension of
GK is equal to 1 [cf. [5], Lemma 3.1; [8], Chapter II, §3], hence, in particular, finite. □

Next, we apply Theorem 2.1 and Proposition 2.3 to prove our main result:

Corollary 2.5. In the notation of Theorem 2.1, it holds that L is not a ×µ-indivisible field,
and every subfield of L is a TKND-AVKF-field.

Proof. First, observe that p is divisible in L. Then since p ̸∈ µ(L), it holds that L is not
×µ-indivisible. Next, observe that L coincides with the field obtained by adjoining all roots
of p to the maximal cyclotomic extension of K. Then it follows immediately from Proposition
2.3 that every subfield of L is TKND. Finally, we conclude from Theorem 2.1, together with
[7], Proposition 7, that L is AVKF, hence that every subfield of L is AVKF [cf. Remark
1.1.1]. This completes the proof of Corollary 2.5. □
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Remark 2.5.1. We maintain the notation of Corollary 2.5. Then it follows from Corollary 2.5
that every subfield of L satisfies the assumptions of various assertions in [2] [especially, [2],
Theorems F, G].

Finally, we observe that there exists an example of a stably ×µ-indivisible field that is not
AVKF:

Proposition 2.6. Write K
def
= Q(ζ4). Then Kab (⊆ Q) is a stably ×µ-indivisible field that

is not AVKF.

Proof. First, it follows immediately from Proposition 1.2 that Kab is stably ×µ-indivisible.
Next, write E for the elliptic curve over K defined by the equation y2z = x3 + xz2; K ⊆
L (⊆ Q) for the Galois extension obtained by adjoining the coordinates of all torsion points
of E to K. Then it follows from the theory of complex multiplication that L ⊆ Kab [cf. [9],
Theorem 2.3]. Thus, we conclude that all torsion points are divisible in E(Kab), hence, in
particular, that Kab is not AVKF. This completes the proof of Proposition 2.6. □

Remark 2.6.1. Thus, it follows from Corollary 2.5 and Proposition 2.6 that the notion of
AVKF-field is neither stronger nor weaker than the notion of stably ×µ-indivisible field.
In particular, there exists no evident implication between [2], Corollary 6.5, (iii), and [10],
Corollary E [cf. [2], Introduction].

Remark 2.6.2. On the other hand, observe that the field “L” that appears in Corollary 2.5 is
a metabelian extension field of a number field, and the proof of Corollary 2.5 depends heavily
on this property. Thus, one may pose the following question:

Question: Does there exist a subfield L ⊆ Q such that
• L is a TKND-AVKF-field that is not ×µ-indivisible;
• for any number field K, the field L may not be realized as a metabelian
Galois extension field of K.

However, at the time of writing of the present paper, the author does not know whether the
answer of this question is affirmative or not.
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